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A b s t r a c t

Introduction: Blood glucose fluctuation is an important factor for the devel-
opment of diabetic complications. Glucose fluctuation aggravated the renal 
injury in diabetic nephropathy. In the present study, our aim was to inves-
tigate the effects of blood glucose fluctuation on the glomerular mesangal 
cells and its related mechanism. 
Material and methods: Mesangial cells were divided into four groups: the 
normal glucose group (NG) cells were incubated in normal glucose con-
ditions (5.6 mmol/l); the high glucose group (HG) cells were treated with 
25  mmol/l; the glucose fluctuation (FG) group received 5.6  mmol/l and 
25  mmol/l glucose repeated 3 times; the mannitol group (MG) received  
5.6 mmol/l glucose plus 24.4 mmol/l mannitol as a control. Cell viability and 
apoptosis were detected, reactive oxygen species (ROS) level, superoxide 
dismutase (SOD) activity and malonaldehyde (MDA) levels were measured. 
Phosphorylated ser/thr protein kinase (P-AKT, phosphor-Ser473), phosphor-
ylated glycogen synthase kinase-3b (P-GSK-3b, phosphor-Ser9) and cleaved 
cysteinyl aspartate-specific proteinase-3 (cleaved caspase-3) levels were as-
sessed using western blot. 
Results: Data suggested that mesangial cells in the FG group show higher 
cell viability in 12 h, and lower cell viability from 48 h. The FG group showed 
cell apoptosis accompanied by a  significant MDA level increase and SOD 
activity decrease in 48 h. More importantly, glucose fluctuation could aggra-
vate oxidative stress in glomerular mesangial cells. Furthermore, the P-AKT 
level was lower, and increased P-GSK-3b and cleaved caspase-3 levels were 
higher in the FG group than in the HG group. 
Conclusions: Glucose fluctuation aggravates mesangial cell apoptosis, 
which may be partly induced by activating oxidative stress and inhibiting 
the AKT signaling pathway.
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Introduction

Diabetic nephropathy is one of the most common diabetic microvas-
cular complications and a  leading cause of end-stage renal disease [1]. 
There are many factors contributing to the development of diabetic ne-
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phropathy, but the major reason is the glomerular 
lesion [2–4]. Glomerular mesangial cells, which are 
one of the main parts of the renal glomerulus, are 
prone to hyperglycemia-induced cell apoptosis and 
injury [5–7]. In addition, loss of glomerular me-
sangial cells was correlated with the progression 
of diabetic nephropathy [8, 9]. Thus, mesangial cell 
apoptosis and injury play a crucial role in the pro-
gression of diabetic nephropathy. Hyperglycemia 
leads to mesangial cell apoptosis, possibly by trig-
gering oxidative stress and the caspase-dependent 
mechanism of cell death [5, 6]. 

Published studies have shown that blood glu-
cose fluctuation was associated with diabetic 
nephropathy in type 2 diabetes patients [10, 11]. 
A previous study reported that oscillating high glu-
cose enhanced human coronary artery endotheli-
al cell apoptosis [12]. Furthermore, in an in vitro 
study, blood glucose fluctuation exacerbated glo-
merular mesangial cells’ abnormal growth and col-
lagen synthesis [13]. However, whether blood glu-
cose fluctuation could contribute to mesangial cell 
apoptosis remains unclear.

As is known to all, the AKT network has an im-
portant effect on kidney cell apoptosis and cell 
injury [14, 15]. Phosphorylation of AKT protects 
mesangial cells against high glucose stimulation 
through inhibiting its downstream proteins, such 
as P-GSK-3b and cleaved caspase-3, and so on [16–
19]. However, whether blood glucose fluctuation 
increases mesangial cell apoptosis related to inhib-
iting the AKT signaling pathway is still uncertain.

In the present study, we investigated whether glu-
cose fluctuation could aggravate apoptosis in glomer-
ular mesangial cells compared with sustaining high 
glucose stimulation, and its molecular mechanism.

Material and methods

Material

CCK8 was purchased from Dojindo (Kumamoto, 
Japan). Malondialdehyde (MDA) and superoxide 
dismutase (SOD) were purchased from Nanjing  
Jiancheng Bioengineering Institute (Nanjing, China) 
to evaluate oxidative stress. 2′,7′-dichlorofluorescin 
diacetate (DCFH-DA), AKT, GSK3, caspase-3 and ac-
tin antibodies were obtained from Beyotime Insti-
tute of Biotechnology (Shanghai, China). P-AKT and 
P-GSK3b antibodies were purchased from Cell Sig-
naling Technology, Inc (Shanghai, China). Dulbec-
co’s modified Eagle’s medium (DMEM/High Glu-
cose) was obtained from Thermo Fisher Scientific 
(Shanghai, China) as well as DMEM/Low Glucose.

Ethical approval

This article does not contain any studies with 
human participants or animals performed by any 
of the authors.

Cells cultures 

Rat glomerular mesangial cells were bought 
from Boster (Wuhan, China). We selected the 5th–
10th generation of mesangial cells in the present 
study. The cells were cultured in DMEM (5.6 mmol/l 
glucose) supplemented with 10% fetal bovine se-
rum (FBS), antibiotics (100 U/ml penicillin and  
100 mg/ml streptomycin), at 37°C in 5% CO2 for 24 h. 

The cultured cells were randomly divided into four 
groups: the normal glucose group (NG, 5.6 mmol/l 
glucose), the high glucose group (HG, 25  mmol/l 
glucose, and then normal glucose conditions incu-
bated for the night), the glucose fluctuation group 
(FG, alternated 5.6 mmol/l glucose and 25 mmol/l 
glucose every 3 h, repeated 3 times, and then nor-
mal glucose conditions incubated for the night) 
and the mannitol group (MG, 5.6 mM glucose plus  
24.4 mM mannitol as an osmotic pressure control).

Effects of fluctuation of blood glucose on 
mesangial cell viability

Cell viability was assayed by the CCK8 kit ac-
cording to the manufacturer’s protocol [20]. Briefly, 
mesangial cells were seeded onto 96-well plates 
and every well contained 5 × 103 cells. Then they 
were grown to 90% confluency. The cells were 
cultured for 12, 24, 48 and 72 h. Then, we added 
10 μl of CCK8 reagent into every well. After 1–4 h 
of incubation at 37°C, cell viability was assessed 
by scanning with a microplate reader at 450 nm. 
There were at least 6 duplicate wells in each group. 

Mesangial cell apoptosis using flow 
cytometry 

Mesangial cell apoptosis can be detected us-
ing flow cytometry analysis [20]. In brief, the me-
sangial cells were seeded onto 96-well plates at 
37°C in a  humidified incubator containing 5% 
CO2 for 48 h. The cells were washed once in phos-
phate-buffered saline (PBS), collected by trypsin 
digestion with 0.25% trypsin (without EDTA), 
washed twice in PBS, then 500 μl of binding buf-
fer, 5 μl of annexin V-FITC and 5 μl of propidium 
iodide were added to each well. Then, the cells 
were incubated in the dark for 15 min at 37°C and 
apoptosis was immediately analyzed. 

Effects of fluctuating blood glucose on ROS 
levels in mesangial cells 

The level of intracellular ROS was determined 
by flow cytometry using the peroxide-sensitive 
fluorescent probe 2′,7′-dichlorofluorescin diac-
etate (DCFH-DA) as previously described [21]. In 
brief, mesangial cells were seeded in a  96-well 
culture plates and incubated with 10 μM DCFH-
DA for 30 min at 37°C. Then, cells were harvested 
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and washed three times with PBS, re-suspended 
in ice-cold PBS and placed on ice in a dark envi-
ronment, and washed twice with DMEM deprived 
of serum to fully remove unbound ROS from the 
intracellular DCFH-DA. The fluorescent signal was 
recorded using fluorescence microscopy (488 nm 
filter; OLYMPUS IX-73, Japan). 

Effects of fluctuating blood glucose on 
MDA level and SOD activity in mesangial 
cells 

The MDA level and SOD activity were analyzed 
using specific reagents according to the protocols 
provided by the manufacturer. Briefly, mesangial 
cells were seeded into 96-well plates and every 
well contained 5 × 103 cells. Cultured cells were in-
cubated for 48 h. Then, we collected the superna-
tant to determine the MDA level and SOD activity. 

Western blotting 

Glomerular mesangial cells were plated in  
100 mm dishes for western blot analysis. After  
48 h cells were lysed with cell lysis solution. Lysate 
was centrifuged at 14 000 g for 30 min at 4°C, and 
the supernatant was stored at –80°C. The protein 
was loaded per lane, separated by SDS–PAGE gel 
and transferred onto an NC membrane and incu-
bated with the primary antibody (1 : 500). After 
washing, the membranes were incubated for 2 h 
with secondary antibody (1 : 200). The immuno-
blots were scanned using Image-Pro Plus 6.0 (Me-
dia Cybernetics, Silver Spring, MD, USA).

Statistical analysis

At least six samples were selected from each 
group for experimental statistical analysis. Image 
J analysis software was used to analyze the West-

ern blotting results. Data were expressed as mean 
± SD. Statistical analysis was performed using 
one-way analysis of variance (ANOVA) followed 
by the least significant difference (LSD) test using 
SPSS 13.0 computer software. P < 0.05 was con-
sidered statistically significant.

Results

Mesangial cell viability under glucose 
fluctuation at different time points

In order to elucidate the change of glomerular 
mesangial cells under glucose fluctuation at differ-
ent time points, we examined glomerular mesangial 
cell viability using the CCK-8 method. As shown in 
Figure 1, mesangial cell viability in both the HG and 
FG groups was increased significantly in compari-
son with the NG group at 12 h, but there was no 
significant difference between the HG group and 
the FG group. However, mesangial cell viability was 
significantly decreased in the FG group compared 
with the NG and HG groups at 24 h, while no signif-
icant difference was found between the NG group 
and the HG group. When compared with the NG 
group, mesangial cell viability was decreased in the 
HG and FG groups at 48 h and 72 h; especially, the 
FG group had lower cell viability than the NG group. 
Moreover, there was no significant difference in 
mesangial cell viability between the NG group and 
the MG group at 12, 24 and 48 h. Nevertheless, me-
sangial cell viability in the MG group at 72 h was 
decreased significantly compared to the NG group. 
In general, these results indicated that fluctuating 
blood glucose obviously reduced mesangial cell via-
bility from 48 h when compared with the HG group.

Fluctuating blood glucose increased 
glomerular mesangial cell apoptosis 

Next, we detected glomerular mesangial cell 
apoptosis using flow cytometry. As shown in Fig-
ure 2, glomerular mesangial cell apoptosis in the 
FG group was significantly increased compared 
with either the NG group or the HG group, even 
though in the HG group it was higher than in the 
NG group. There was no significant difference 
between the NG group and the MG group. These 
results indicated that blood glucose fluctuation 
accelerated glomerular mesangial cell apoptosis.

Glucose fluctuation aggravated oxidative 
stress in glomerular mesangial cells

It is reported that oxidative stress plays an im-
portant role in glomerular mesangial cell injury in 
high sugar conditions [22]. In addition, fluctuating 
blood glucose aggravated renal injury by increasing 
the generation of oxidative stress [23]. As shown 
in Figure 3, the level of intracellular ROS in the HG 

 NG HG FG MG

 12 h          24 h          48 h          72 h

Figure 1. Effects of fluctuation blood glucose on 
mesangial cell proliferation. Cells incubated in dif-
ferent glucose conditions for 12, 24, 48 and 72 h 
were analyzed by CCK-8

Data are shown as mean ± SD. aP < 0.05 vs. the NG group, 
bp < 0.05 vs. the HG group and cp < 0.05 vs. the FG group 
by one-way ANOVA.
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group was increased in comparison with that in the 
NG group; the increase was more obvious in the FG 
group, and the ROS level in the FG group was high-
er than in the HG group. The MDA level in the HG 
group was significantly raised compared with the 
NG group; moreover the increase was more marked 
in the FG group. The SOD activity was significant-
ly lower in the FG group compared with either the 
NG group or the HG group. These results suggested 
that glucose fluctuation aggravated the oxidative 
stress state in glomerular mesangial cells.

The effect of glucose fluctuation on 
P-AKT, P-GSK-3b and cleaved caspase-3 
expression in glomerular mesangial cells 

Previous studies indicated that high glucose ac-
celerated the glomerular mesangial cell death via 
the AKT signaling pathway [24, 25]. To explore the 
effect of glucose fluctuation on the AKT pathway 
in glomerular mesangial cells, we examined P-AKT, 
P-GSK-3b and cleaved caspase-3 expression levels 
in glomerular mesangial cells exposed to glucose 
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Figure 2. Apoptosis of mesangial cells by flow cy-
tometry

Data are shown as mean ± SD. aP < 0.05 vs. the NG group, 
bp < 0.05 vs. the HG group and cp < 0.05 vs. the FG group 
by one-way ANOVA.
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Figure 3. Effects of glucose fluctuation on intra-
cellular ROS level, MDA level and SOD activity on 
mesangial cells

Data are shown as mean ± SD. aP < 0.05 vs. the NG group, 
bp < 0.05 vs. the HG group and cp < 0.05 vs. the FG group 
by one-way ANOVA.
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fluctuation. As shown in Figure 4, there was no 
significant difference in the total AKT expression 
among the four groups. The level of P-AKT was 
lower in the HG group compared with that in the 
NG group, and the P-AKT level was lower in the FG 
group than that in the HG group. Moreover, high 
glucose could increase P-GSK-3b and caspase-3 
activation in glomerular mesangial cells, but glu-
cose fluctuation increase of P-GSK-3b and cleaved 
caspase-3 levels was more remarkable than stabi-
lized glucose. These results indicated that glucose 
fluctuation accelerated glomerular mesangial 
cell apoptosis, which was linked to inhibiting de-
creased phosphorylation of AKT and increasing 
P-GSK-3b and cleaved caspase-3 levels. 

Discussion

A previous in vitro study showed that glomer-
ular mesangial cell apoptosis is a  response to 
high glucose stimulation [26]. Furthermore, in an 
in vivo study, glomerular cell apoptosis could be 
found in the late phase of nephropathy [27]. In the 
present study, we chose a different time point to 
observe the mesangial cell vitality using the CCK8 
kit, and we found that sugar fluctuation reduces 
mesangial cell vitality from 24 h, but has a  sig-
nificant reduction when compared to continuous 
high sugar stimulation from 48 h. Furthermore, we 
found that mannitol inhibited cell vitality at 72 h, 

so in the present study, we assessed the effect of 
glucose fluctuation on the mesangial cells and its 
related mechanism at 48 h. However, these results 
are different from a previous report [13]; we con-
sider that this discrepancy may due to a different 
experimental protocol. 

Overwhelming evidence indicated that high 
sugar induced cell apoptosis by increasing the 
generation of intracellular ROS in glomerular me-
sangial cells [5, 28]. Our previous study showed 
that fluctuating blood glucose increased intracel-
lular ROS generation more than continuous high 
sugar; the SOD activity was obviously decreased 
and the MDA levels were increased in kidney sub-
ject to hyperglycemia in diabetic rats [23]. Further-
more, high sugar decreased the SOD activity and 
increased the MDA levels at 48 h compared with 
the normal glucose level, and blood glucose fluc-
tuation markedly decreased their SOD activity and 
increased their MDA levels at 48  h. In addition, 
blood glucose fluctuation augmented apoptosis in 
pancreatic b cells through oxidative stress [20]. It 
is worth mentioning that our data suggested that 
glucose fluctuation accelerated cell apoptosis by 
an oxidative stress-dependent mechanism, and 
this result was consist with the present studies 
[29–32]. Hence, partly, we concluded that glucose 
fluctuation increased glomerular mesangial cell 
apoptosis via an oxidative stress mechanism.

Figure 4. Effects of glucose fluctuation on P-AKT, P-GSK-3b and cleaved caspase-3 levels. A – Representative bands 
of P-AKT and AKT. B – Representative bands of P-GSK-3b and GSK-3b. C – Representative bands of caspase-3.  
D – Analysis for optical density (OD) value of P-AKT, AKT, P-GSK-3b, GSK-3b and cleaved caspase-3 protein expres-
sion

The data are shown as mean ± SD and are expressed as fold difference vs. the NG group, bp < 0.05 vs. the HG group and cp < 0.05 
vs. the FG group by one-way ANOVA.
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The study confirmed that blood glucose fluc-
tuation obviously decreased P-AKT action and 
increased the level of P-GSK-3b and Cleaved 
caspase-3 in glomerular mesangial cells compared 
to high sugar conditions. High glucose evokes an 
intrinsic pro-apoptotic signaling pathway in glo-
merular mesangial cells [6]. AKT activation was 
combined with protein, GSK-3b, which inhibits 
its kinase activity [33]. Studies have shown that 
P-GSK-3b was activated when there was inhibi-
tion of AKT phosphorylation in mesangial cells 
[34]. Especially, high sugar could decrease AKT 
activation and increased its downstream apop-
tosis related factors, such as GSK-3b and cleaved 
caspase-3, resulting in glomerular mesangial cell 
apoptosis [19]. In this study, glucose fluctuation 
could obviously decrease the P-AKT level and in-
creased the expression of P-GSK-3b and cleaved 
caspase-3 in glomerular mesangial cells compared 
to high sugar conditions. On the basis of these re-
sults and previous work, mesangial cell apoptosis 
may be partly involved in inhibition of the AKT 
signaling pathway. These result demonstrate that 
the AKT signaling pathway may exert an import-
ant effect on glomerular mesangial cell apoptosis 
induced by unstable glucose stimulation. 

In conclusion, blood glucose fluctuation in-
creased mesangial cell apoptosis. This result may 
be partly induced by activating oxidative stress 
and inhibiting the AKT signaling pathway. These 
data provided important empirical evidence for 
us to understand the harm of blood glucose fluc-
tuation.
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